This TM series is used for documentation and timely communication of preliminary resuits, interim reports, or special purpose information; and has not received complete formal review, editorial control, or detailed editing.

Northeast Fishery Management Task Force

The Status
 of the

Marine Fishery Resources
of the
Northeastern United States

Margaret M. McBride and Bradford E. Brown

U.S. DEPARTMENT OF COMMERCE Philip M. Klutznick, Secretary
National Oceanic and Atmospheric Administration
Fichard A. Frank, Administrator
National Marine Fisheries Service
Terry L. Letzell. Assistant Administrator for Fisheries

Northeast Fisheries Center
Woods Hole, Massachusetts

PREFACE

This document is the result of studies originating within the Northeast Fishery Management Task Force. The Task Force, organized in 1979 by the New England and Mid-Atlantic Fishery Management Councils and funded by the NMFS, seeks to promote discussion and dialogue on the major issues of fishery management and to explore the effects of various fishery management alternatives.

Composed of representatives from the fishing industry, Regional Fishery Management Councils, federal and state agencies, academic institutions, and general public, the Task Force will operate in three phases. The first phase will assemble background information for identifying and analyzing management options. The second phase will examine this background information to determine the data requirements, regulatory measures, administrative procedures, and enforcement methods associated with each management option. The third phase will critically review the various options for application to specific fisheries, particularly the Atlantic demersal finfish fishery.

This document is one of eight developed under Phase I operations, all of which are being issued in the NOAA Technical Memorandum NMFS-F/NEC series. This document and six others functionally serve as appendixes to the eighth and leading document for Phase I operations"Overview Document of the Northeast Fishery Management Task Force, Phase I."

Jon A. Gibson, Coordinator
NOAA Technical Memorandum NMFS-F/NEC series

TABLE OF CONTENTS

Introduction 1
Synopses of Species 2
Atlantic Cod 2
Haddock 2
Pollock 3
Silver Hake 3
Red Hake 3
White Hake 3
Atlantic Mackerel 3
Redfish 4
Yellowtail Flounder 4
Winter Flounder 4
Summer Flounder 4
American Plaice 4
Windowpane Flounder 4
Witch Flounder 5
Atlantic Herring 5
River Herring 5
Black Seabass 5
Skates 5
Scup 5
Butterfish 6
Spiny Dogfish 6
Angler-goosefish 6
Ocean Pout 6
Northern Shrimp 6
Loligo Squid 6
Illex Squid 6
Bluefish :
Tilefish
Total Finfish and Squid 7
Description of Table 7
Geographical Range and Stock Structure 7
Growth 8
Age Range in Fished Populations 8
Recruitment 8
Maturity 8
Natural Mortality 9
Fishing Mortality 9
Abundance 9
Maximum Sustainable Yield 10
By-catch 10
Summary and Conclusions 10
Acknowledgements 11
Footnotes 11
Literature Cited 12
Figures 14
1 Major geographical areas off the Northeast coast of the United States 14
2 Relative percentages of recreational, foreign and U.S. commercial catch to the total catch for each species in the year 1970 15
3 U.S. and foreign commercial catch values (mean total annual catch 1969-1978) 16
4 Salt water angling effort: 1960, 1965 and 1970 17
Tables 18
11978 total catch (MT) North and Middle Atlantic Regions as shown in Fig. 1 18
2 Annual U.S. and foreign commercial landings for major species 1969-1978 for areas shown in Fig. 2 19
3 Resource summary table 20

INTRODUCTION

The fishery resource of the Northwest Atlantic from Georges Bank to Cape Hatteras has undergone dramatic changes in many respects during the course of its regularly recorded history. Inhabited by over 200 different species of fish, this region has been of major fisheries importance since the 15 th century. A number of its fisheries (Figure 1) have been of great international consequence.
In the United States many species are of considerable importance for recreational fishing. These species either inhabit coastal waters for prolonged periods of their lives, or frequent such inshore areas seasonally. The relative percentages of recreational, foreign, and U.S. commercial catch contributing to the total catch for each species in the year 1970 are shown in Figure 2 (Duel 1973, ICNAF 1972a). Data from 1970 have been presented because it is the most recent year for which recreational catch estimates are available for all species. Recreational fishing effort appears to be increasing (Figure 3) (Clark 1962; Duel and Clark 1968; Duel 1973).

The waters of the Northwest Atlantic, from Georges Bank to Cape Hatteras are among the most productive in the world in terms of finfish biomass per unit area. The current estimate of maximum sustainable yield is 900,000 metric tons (T) for finfish and squid (Brown et al. 1976). The total average catch of each species in absolute values for 1969-1978 is given in Figure 4 and the basic commercial and recreational data are given in Table 1 and Table 2 respectively. The values in Figure 3 represent the sum of all recreational, foreign, and U.S. commercial catch (food and industrial), and indicate the magnitude of the fishery for each species relative to all others. Average landings totaled $900,000 \mathrm{~T}$ and there were 26 species for which individual averages were 3,000 T or greater.

The major function of fisheries research is to determine resource productivity, and to evaluate natural causes of population fluctuations and man's fishing impact. Natural changes in the environment are factors largely responsible for fluctuations in fish abundance. However, the intensity of man's fishing effort can be the overriding determinant and is the only controllable factor affecting abundance.

Fisheries management in the Northwest Atlantic essentially began in 1953, when the International Commis;ion for the Northwest Aulantic Fisheries (ICNAF), then
three years old, imposed mesh-sized regulations on some fisheries (ICNAF 1953). Prior to 1960, the area off the coast of the Northeastern United States was fished almost exclusively by a coastal fleet of small U.S. vessels of under 300 gross registered tons (GRT). Fishing effort was not sufficient to impair the productivity of the resource as a whole, although a few traditional groundfish stocks were near full exploitation.

Landings during the 1950 's averaged less than 500,000 T : the total resource was quite stable, and many large stocks were virtually unexploited. This situation changed dramatically in 1961, when distant-water fleets began to fish Atlantic herring on Georges Bank and in the course of this activity discovered large groundfish stocks. Subsequent fishing effort was directed towards groundfish in the 1960's, and catches of groundfish and squid rose to $700,000 \mathrm{~T}$ in 1965 (ICNAF 1967). Groundfish catches subsequently declined, and as a result, eifort was again shifted towards herring and also mackerel, resulting in a peak catch of $670,000 \mathrm{~T}$ of principal pelagics in 1971 (ICNAF 1972a). Landings of other finfish rose to $215,000 \mathrm{~T}$ in 1969 (ICNAF 1971) and landings of squid rose to a $57,000 \mathrm{~T}$ peak in 1973 (ICNAF 1975) (Canada is the basic source of fishery statistics for this area). Landings for all species averaged about 1.2×10^{6} MT for 1971-1973 (ICNAF 1972b; ICNAF 1974a; ICNAF 1975). This is substantially larger than the MSY of 900. . 000 MT estimated by Brown et al. (1976). Many of the stocks heavily fished during this period of expansion suffered dramatic declines in abundance in the early 1970's. By 1974, a comprehensive management regime had been instituted under ICNAF (ICNAF 1973, 1974b). Since passage of the Fisheries Management Conservation Act in 1976, overall fishing (predominantly distant-water fleets) has been even further reduced. While there have been considerable increases in the overall resources, some stocks have not yet recovered.

This paper reviews the recent history and current status of fisheries for 28 important species in the Northwest Atlantic plus total finfish and squid. Current estimates of biological conditions that reflect production potential are presented in Table 1. Both research survey and commercial data are used for these reviews. The survey indices are those from bottom trawl surveys made by the Northeast Fisheries Center of the National Marine Fisheries Service (see Grosslein 1969 and Clark. 1979 for description of survey).

SYNOPSES OF SPECIES

Atlantic Cod

Four major geographical groups of Atlantic cod have been recognized in the waters off the northeastern United States: Gulf of Maine, Georges Bank, Southern New England, and the New Jersey coast (Wise, 1962). ${ }^{2}$ Studies indicate that intermingling between the Gulf of Maine and the other groups is minimal while mixing between the three southerly groups is more extensive, particularly between the three Southern New England and the New Jersey populations. South of Long Island, cod eggs and larvae have been routinely recorded although the virtual absence of juvenile cod in the southern area compared to the number of adults suggests that the New Jersey population may not be selfsustaining. ${ }^{\text {a }}$ In addition to exchanges within these areas off the northeastern United States, there is also some movement of the Gulf of Maine fish into and out of the Bay of Fundy, and some minor exchanges across the Fundian Channel from Georges Bank, to the Scotian Shelf and Browns Bank. Cod have a long history of commercial fishing in the Northwest Atlantic; there was a considerable increase in the latter part of the 1960's due to expansion of USSR. Canadian, and Spanish effort on Georges Bank. ${ }^{+}$This increased effort and resultant catch tollowed an apparently modest increase in the Georges Bank population size. Following this heavy exploitation, the population declined and the fishery became more dependent on current recruitment than formerly. Concomitantly. cod became less abundant in more southerly areas in wintertime than before. Following the reduction in the fishing effort of the distant-water fleet and the entry of the 1971 and 1975 classes into the Georges Bank population. the catch increased. Presently, the 1975 year class is maintaining itself in the population longer than those year classes preceding it despite fishing effort slightly above that which might be expected to sustain the highest catch rate in the long term. This is an indication both of the size of the year class and the reduced mortality rate compared to that of the late 1960 's and early 1970 s. The Gulf of Maine catch has increased considerably in recent years following entry into the fishery of some good year classes. Year classes of cod in the areas considered in this paper, have not exhibited the extreme fluctuation found in many other species. Given the past history of lower catches in the Gulf of Maine, an area which has had a long history of fishing, concern has been expressed that cod may not be able to support catches at the current level for an extended period of time. ${ }^{+5,5}$

Haddock

The haddock stock on Georges Bank has been a classic for fishery management. Catch history and scientific data in the period from 1930 to the early 1960's indicated a very stable population despite fluctuation in year-class size la ratio of 6 to 1 in recruiting year-class size excluding the extremely abundant 1963 year-class and
about 20 to 1 including it). $\quad .9$ The number of year classes in the population to a large degree, stabilized the stock, so that yields averaged close to 50,000 metric tons throughout the period despite the year class variability. The stock collapsed in the 1960 's. the result of a series of years with very low year class production. These came just before the extremely heavy removals by the foreign fleet in the mid-1960's lowered the spawning stocks to $10^{\circ} \tau$ of earlier years. Throughout the late 1960^{\prime} 's and into the 1970 's, spawning produced low year classes. Variability was greater than in the earlier periods (100 to 1 excluding 1975 and about 1,200 to 1 including it). $\cdot 3$ This indicates that recruitment at low spawning stock levels has higher variability, considerably lower sized year classes on the average, and much less frequent good year classes. The 1975 year class was extremely strong ranking with the larger ones that occurred during the pre-1964 period. The fact that such good year classes occurred so infrequently in the latter period compared to earlier. supports the overall importance of maintaining an adequate spawning stock. The 1975 year class was followed by two poor year classes similar to those just preceding it. The entry of the 1975 year class increased the population by an order of magnitude.* Management attempted to hold back the removals which, at this population level, would easily have yielded more than 50.000 tons of fish similar to catches occurring during the 1950 's. With the higher fishing mortality rates that the present fleet is capable of exerting, the consequences of completely uncontrolled fishing would have been even more severe. The New England Regional Fisheries Management Council's goals were to hold back fishing mortality allowing the 1975 year class to recruit to the spawning stock, maintaining it at as large a size as possible until other good year classes recruited. This was intended to result in a more stable spawning stock consisting of several year classes. The results of NEFC research survey indicate that the 1978 year class. the first spawned by the 1975 year class, is of a size typical of the $1930-1960$ period.

The 1979 NEFC summer research survey gave preliminary indications that the 1979 year class may also fall into that range of values. If these levels of recruitment continue, the haddock and fishing mortality held to moderate levels will soon resemble in terms of the number of age groups, spawning stock. and total abundance, the conditions existing prior to entry of the foreign fleets. This would imply a continuing yield averaging between 40,000 and $50,000 \mathrm{~T}$, if fishing effort is held at moderate levels. It should be realized that yearly catches will vary about these averages.

Haddock in the Gulf of Maine have appeared over the years to follow generally the same population trends as those on Georges Bank. If this pattern continues this stock will also be in a condition similar to former periods. Its vield, however, would be on the average about 10 to 20 percent of that on Georges Bank, given historical values."

Pollock

Pollock is a transboundary stock found on Georges Bank, the Scotian Shelf, and in the Gulf of Maine. The primary spawning area appears to be in the southwestern Gulf of Maine (Clark et al. 1977). Both Canada and the United States have increased their pollock fishing in recent years. Indications are that pollock are now at a level of abundance slightly higher than a few years earlier although current catch statistics are questionable, making it difficult to indicate the predicted catch for a given level of effort. There is some indication that catch per unit effort in the commercial fishery may be declining slightly, this and certain biological considerations support a conclusion that a fishing mortality lower than currently existing in the fishery would result over time in maintaining a higher sustainable catch rate, a more abundant stock size, and greater stability in the fishery. Catch levels about 20% lower than at present ${ }^{10}$ would be required to achieve this.

Silver Hake

Silver hake are found on the Nova Scotian Shelf south to the Middle Atlantic. General distribution studies indicate that the Nova Scotian, Georges Bank, Southern New England-Middle Atlantic, and the Gulf of Maine fish have some degree of stock separation, with the greatest degree of separation being with the Nova Scotian stock. Stock analyses (Anderson et al., 1980) indicate that trends in abundance in these three southern stocks have differed over the years. There are also morphometric studies (Conover et al. 1961) reporting stock differences indicating some degree of separation and differential response to fishing pressure.

Silver hake spawning stocks on Georges Bank increased about six-fold from the middle 1950's to a peak in the middle 1960's, then declined to somewhat lower levels as fishing mortality increased greatly with entry of the distant-water fleets. Following removal of that effort. the stock has recovered to levels approximately 1% to 2 times ihat of the middle 1950's, but only to about ${ }^{13}$ to $1 / 4$ of the peak period size (Anderson et al., 1980). The stock now appears to be stabilizing with recent recruitment at lower levels.

The Southern New England-Middle Atlantic stock of silver hake was exploited by a U.S. industrial fishery in the 1950's. The population increased six-fold to a peak in the middle 1960's and then declined to levels slightly above those existing in the 1950's (Anderson et al., 1980). With reduction of fishing mortality and the occurrence of strong year classes, the stock is rebuilding and is now almost as large as it was during much of the 1960's.

Silver hake in the Gulf of Maine declined steadily during the latter half of the 1950's and throughout the 1960 's. reaching low points in the 1970 's. Poor year classes occurred during the latter 1960's. Since that time, year class strength has improved but not to the levels observed previously. The demise of the U.S.A.
shrimp fishery with its associated by-catch of immature silver hake may be a factor in the improvement seen in this particular stock through 1978. Very high fishing rates occurred in the late 1950's and the very early 1960's (Anderson et al., 1980). Since then, fishing mortality has been reduced, assisting recovery of the stock. The spawning stock is now about one-third of that observed at peak levels. but about three times that observed at the lowest level of abundance.

Red Hake

Red hake are located primarily in the Georges Bank. and Southern New England-Middle Atlantic area. Distribution studies and following trends in abundance suggest that the Southern New England-Middle Atlantic fish are to some extent separate from those on Georges Bank. ${ }^{11}$ The Georges Bank stock was essentially unfished until the middle 1960's entry of the distantwater fleets. The accumulated stock was harvested and reduced to a level at which the fishery depended on annual productivity. From the later 1960 's, the spawning stock increased somewhat into the early 1970's. It has been reduced to slightly lower levels at the present time.: The Southern New England-Middle Atlantic red hake stock has a longer history of fishing being an important component of U.S.A. industrial catches in the 1950's. It also supported very high catches in the middle 1960's as a result of the entrance of the distant-water fleets. Fishing effort has since decreased. Abundance trends are available only for the more recent period. They indicate a relatively steady decline in abundance from peaks in the latter 1960 's and the early 1970's, when the stock size was about twice that at the present time. Indications are that the recent year classes are somewhat larger than those in the early 1970's.:

White Hake

White hake may possibly be considered as a single stock throughout the Scotian Shelf, Gulf of Maine, and Georges Bank area. ${ }^{14}$ Centers of abundance appear to lie in the deep areas of the Gulf of Maine. Catches have increased considerably in the 1970 's. Canada taking the largest proportion. NEFC bottom trawl surveys indicate that the stock has remained relatively constant since 1968 somewhat more abundant than earlier. ${ }^{4}$ The extent to which sustainable catches could be increased is not known.

Atlantic Mackerel

Atlantic mackerel range from Cape Hatteras to New. foundland (Sette 1950: Anderson and Paciorkowski. in press). Stock biomass declined in 1977 to a low point about one-fifth of the 1969 peak, approximately to the level of the early 1960's; it has begun to recover since. Spawning stock has declined to a low level in 1979. but survey data indicate that it shouid begin to recover shortly. ${ }^{16}$ The peak population resulted from recruit-
ment of several very good year classes (Anderson and Paciorkowski, in press; Anderson 1979). The existence of stock recruitment relationships is not clearly evident, but it is probable that spawning stocks measurably smaller than in the early 1960 's' stocks would produce fewer good year classes and more poor ones. There was a considerable restriction of distant-water fleet fishing during the late 1970 's. The 1978 year class appears to be the largest in the past few years and will accelerate the rebuilding of the stock. The spawning stock can be expected to improve both in 1980 and 1981 based on entry of this year class. ${ }^{15}$ This should bring the mackerel spawning stock significantly above the minimal levels observed at present, if harvest is maintained at the moderate levels of recent years. Restricted fishing in 1980 may not only increase the spawning potential, but should also increase yield per recruit. ${ }^{15}$

Redfish

The redfish stock is characterized by many year classes and very late recruitment to the fishery (Kelly and Wolf 1959: Mayo, in press). ${ }^{16}$ In the Gulf of Maine the stock size is considerably lower than in earlier years. The fishery has become increasingly concentrated on a single year class (1971), compared to previous years in which individuals 20 to 30 years old have comprised significant portions of the catch. The 1971 year class is the only strong year class since 1963. It has now fully recruited to the fishery with apparently no significant recruitment following. Thus, to prevent further decline requires harvesting only very small catches compared to the eariier ones. which in part represented removals of accumulated stock that had built up over the years when fishing mortality was low. There are further indications that the redfish stock consists of separate groups or "pockets"; the fleet fishing a given area to low abundance. and then moving to another pocket. Presently, it appears that all "pockets" in the Gulf of Maine have been reduced in abundance (Mayo, in press).

Yellowtail Flounder

Yellowtail flounder stocks have been studied most extensively on Georges Bank and Southern New England: less is known about the Cape Cod and New York-Middle Atlantic area (Royce et al. 1959; Lux 1969; Sissenwine 1977). ${ }^{17 \cdot 18.19}$ The Cape Cod stock has been fished steadily for many years and appears to be maintaining itself at its current modest level, although recorded commercial catch-per-day is less than it was in the late 1960 's. ${ }^{15}$ The Georges Bank stock entered 1979 at very low levels, having declined considerably from the middle 1960 's. ${ }^{12} 19$ It would take several good year classes fished only moderately to rebuild this population. The Southern New England stock supported large yellowtail catches during the 1940 's and again during the 1960 's. Catches were low in the 1950's, as they have been recently. Pre-recruit indices indicated that these very low populations would increase in 1979; commercial fishery data confirm this. ${ }^{3}$ The extent to which these recruits to the
fishery will accumulate in the spawning stock remains to be seen. Commercial catch-per-day just prior to 1979 was quite low relative to earlier years. The present spawning stock level of yellowtail flounder may be low enough so that even with increasingly favorable environmental conditions, which seem to be occurring in Southern New England, a lower frequency of good year classes can be expected than with a larger spawning stock. Middle Atlantic catches and stock appear lower than they were in the early 1970's.

Winter Flounder

Winter flounder are distributed along the coast and out onto Georges Bank. They are fairly sedentary and there appear to be local populations along the coast. There does not seem to be an appreciable movement from Georges Bank to the inshore grounds. ${ }^{20}$ Winter flounder in general appear to have been somewhat lower in abundance in the early 1970's than in the 1960° s, possibly as a result of by-catch in the heavy offshore fishery. Stock sizes in the 1970 's, particularly on Georges Bank, have increased to about early 1960 's levels. The commercial catch has also increased.

Summer Flounder

Summer flounder are found from Cape Hatteras to Cape Cod with the center of abundance in the MiddleAtlantic area. Populations south of Cape Hatteras may be distinct from those to the north (Wilk and Smith 1980). Commercial landings were high in the late 1950's and then declined throughout the 1960's. Summer flounders were subjected to the general increased fishing mortality in the mixed offshore fishery of the distant water fleet: with reduction of this mortality, U.S. catches have increased. Survey cruise abundance indices indicate increased abundance in the 1970's compared with the 1960 's. ${ }^{21}$

American Plaice

American plaice are primarily found in the deeper waters of the Gulf of Maine. They are also located on the Scotian Shelf and are more important to the fisheries there than off the U.S. coast. American plaice appears to be a sedentary species; there is probably little mixture between areas. Populations appeared to decline in the latter 1960's and early 1970's and have since increased to early 1960 levels. Commerical catch is now higher than in the early 1960° s. ${ }^{20}$

Windowpane Flounder

Windowpane flounder occur primarily in the Georges Bank and Southern New England areas. It has traditionally been a by-catch species but recently, commercial landings have increased. primarily on Georges Bank. Only the very largest individuals of this species are landed for food; others have been discarded or used for industrial purposes. On Georges Bank, the survey indices have been significantly higher during the 1970's than in the 1960° s. The Southern New England indices.
in contrast, indicate a slight decline from the earlier 1960's to the early 1970's followed by a modest recovery typical of many of the species which were subjected to the distant-water fleet fishery before its curtailment. ${ }^{20}$

Witch Flounder

Witch flounder, like American plaice, are also found in deeper water areas, predominantly in the Gulf of Maine. They appear to be relatively stationary fish and are unlikely to mix with witch flounder on the Scotian Shelf. Abundance has been fairly stable throughout the entire period. However, the lowest survey abundance indices occurred following the peak removals of the early 1970's, when total international effort approximately doubled previous levels. ${ }^{20}$ The U.S. catch dropped after the early 1970's reaching a low point in 1976; however, in 1977 and 1978 catch and population both seemed to have recovered.

Atlantic Herring

Atlantic herring spawn in three major areas between Nova Scotia and Cape Hatteras: on northern Georges Bank, on the southwest part of the Gulf of Maine (Jeffreys Ledge) and off Nova Scotia (Lurchers Shoals). There have been fisheries for adults on the spawning grounds. and more recently on the over wintering and spring concentrations in which there appears to be some degree of intermixture between stocks. Furthermore, there is a juvenile fishery along the coasts of Maine and New Brunswick. All herring spawning stock levels are now considerably lower than in the 1960's (Anthony and Waring 1980, in press). The Georges Bank stock still appears to be extremely small as a result of the continued heavy fishing effort during a period of poor yearclass production, with no firm indication as yet of rebuilding of this stock. The Jeffreys Ledge spawning area had a concentration in 1978 consisting of 1970 and 1973 year class fish. The 1976 year class appears reasonably strong and supported the bulk of the 1979 fishery in the first part of the year. The extent to which the spawning stocks rebuild depends on the degree that they are allowed to accumulate biomass. Three year olds do not often contribute greatly to the spawning stock on Jeffreys Ledge but have in certain years been major contributors on Georges Bank (Anthony and Waring, in press). When Atlantic herring stocks are very low they may remain low for a considerable period before good year classes recruit to rebuild the fishery.

River Herring

The river herring fishery is directed towards two species: alewife and blueback herring. The center of the fishery is in Virginia and North Carolina. This was entirely a U.S.A. inshore fishery until 1967 when the distant-water fleets began harvesting river herring in the offshore regions. At this time the stock declined precipitously. Despite cessation of the offshore fishery, spawning success in the major rivers has continued to be very low, and the stocks are now at historically low
levels. ${ }^{22}$ In the Gulf of Maine there has been, in contrast, a gradual but steady increase in recent years, probably due to improvement in stream conditions resulting from conservation measures. ${ }^{23}$

Black Sea Bass

Commercial catch statistics for black sea bass reflect a steady decline in abundance from a peak in the early 1950's. A general low was reached in the early 1970's. Recent catches have shown a modest increase but remain at about 25% of the early 1950 's level. Black sea bass exhibit a sexual transformation generally between ages 2 and 5 , beginning life as females and later transforming into males (Kendall 1977). Most of the exploited black sea bass consequently are males. It is postulated by Kendall and Mercer (in press) that heavy fishing pressure could cause an imbalance in the spawning population so favoring the number of females that the remaining males might not be sufficient for adequate reproduction. The recreational catch is thought to be consistently larger than the commercial, although data on the recreational catch is sketchy. In the 1970's the recreational catch comprised more than 75° co the total catch of black sea bass. Survey indices indicate that 1969 and 1974 were years of relatively high abundance. The 1978 abundance index was 44^{c} c less than the 1967-1978 average.

Skates

Skates have been taken frequently throughout the history of the U.S. trawl fishery; most of them have been discarded but some have been landed for industrial and food purposes. During the period of intense distantwater fleet fishing, skate catches also increased. The larger proportion of the catch consisted of big, little, and thorny skates. Skate abundance in trawl survey catches has declined in recent years. Increased U.S.A. trawling may to some degree be substituting for part of the distant-water fleet effort. Being a species of relatively low fecundity, skates can be expected to have a longer recovery time than more fecund species. Recruitment studies based on survey length frequency data indicate no evidence for the dominant year classes which serve to speed stock recovery in other species. ${ }^{24}$

Scup

Historical landings of scup reflect large fluctuations in population size (Morse 1978). Poor spawning success. increased fishing pressure (both distant-water fleets and domestic), and high discard levels of juveniles combined to reduce scup catches dramatically from the early 1960's to the early 1970 's. Landings in the 1970 's were about 20.22°; of the peak in the 1960 's and the catch in 1973 was $50^{\circ} \%$ less than the 1929-1973 average. The 1976 survey abundance index was the largest in the 1967-1978 data series; the next largest value was in 1969: 36 of i976. A three-vear running average for the survey indices shows an increase in 1976-1978 that more than doubles the average of previous vears in the series.

Butterfish

Butterfish were the basis of a very modest U.S. fishery prior to 1960; after which these were subjected to increased exploitation from the distant-water fleets (Murawski et al. 1975). As a result, the population became dominated by younger age groups (Murawski and Waring 1978). Recently, the reduction in the distant-water fleet catch has resulted in a decrease in fishing mortality rates and an increase in the average age of the fish in the population. Recent survey cruise total abundance indices are slightly lower than the 1963-1978 average. as is the recruitment index. Nevertheless, survey indices are still well within the range of values necessary to support a fishery larger than that now existing. ${ }^{2}$

Spiny Dogfish

In the Northwest Atlantic the spiny dogfish ranges from Newfoundland to North Carolina, and is common in continental shelf waters down to 200 m (Jensen 1965). It undergoes diel vertical migrations, with daytime catches considerably larger than those at night. The spiny dogfish is among the most numerous species in the Northwest Atlantic. The estimated range of total biomass for the New England area alone is from 170,000 T to $225,000 \mathrm{~T} .{ }^{26}$ Despite the large biomass of the species. the market both food and industrial is very small. The catch of the species in the Northwest Atlantic in most years has been significantly below the total production of the fish.? Recently, the U.S.A. has developed a small export market of about $2,000 \mathrm{~T}$ of dogfish fillets with the European nations; this has increased in 1979. The reproductive potential of the dogfish is relatively low: it is unlikely that the stock could sustain a yield of over $20{ }^{\circ}$ of its size for a continued period of time (Holden 1968). The 1978 survey index for spiny dogfish shows no appreciable change from the 1967-1978 average.

Angler-Goosefish

Clark and Brown (1977) estimated the biomass of angler at $18,000 \mathrm{~T}$ based on survey data from 1968 to 1974 for Browns Bank, Nova Scotia, to Cape Hatteras. Both food and industrial use of goosefish is low. The U.S.A. is responsible for only $4{ }^{\circ} \%$ of the removals per year from Cape Hatteras to the eastern end of the Nova Scotian Shelf since 1966. The U.S.S.R. has taken most of the remaining 96°. Since 1966, landings for food have increased. The 1978 survey index is $31 \widetilde{\circ}$ greater than the 1967-1978 average, and the 1977 and 1978 values are the largest seen since 1972.

Ocean Pout

Knowledge of historical trends in the ocean pout fishery is somewhat obscure. In the New England area. commercial landings were negligible up to and during the 1930's and most of the catch was discarded. Landings fluctuated between 21 and 52 T from 1935 to 1942. In 1943, attempts to market ocean pout as a food fish
were frustrated by parasitic lesions caused by a protozoan, which proved to be a recurring problem (Sheehy et al. 1974). During the 1950 's, U.S.A. landings were almost entirely industrial. Ocean pout comprised a substantial part of the total U.S. industrial fishery between 1970 and 1974. Distant-water fleet vessels were involved in the fishery from 1966 to 1974, peaking in 1969 at $27,000 \mathrm{~T}$. It declined to an average level of $5,600 \mathrm{~T}$ from 1970 to 1974. Since 1974 the ocean pout fishery has been essentially domestic only. Declines in relative abundance of 74% for Southern New England and 82% for Georges Bank have been reported for the period 1963 to 1974 (Clark and Brown 1977). Total U.S.A. landings in 1977 were 1,060 T; more than 50% of these were marketed as food fish. The 1978 survey index is $51 \sigma_{0}$ greater than the 1976 to 1978 average. Years with poor indices seem to be preceded by years of relatively heavy fishing.

Northern Shrimp

Landings of northern shrimp from the western Gulf of Maine peaked at $13,000 \mathrm{~T}$ in 1969 but have recently become essentially non-existent. Water temperatures are declining and may be more favorable now than in the recent past for production of good year classes to build a larger spawning stock and a single year class fishery. In latter years, fishery effort has concentrated on several age groups including small males prior to their transformation into female spawners; historically the Maine winter fishery focused on egg-bearing females (Anthony and Clark 1978; Clark and Anthony, in press; Dow 1977: Wigley 1973). ${ }^{28,29}$ At this time the fishery is closed to allow the stock to recover to levels at which good reproduction can be expected more frequently.

Loligo Squid

Loligo squid populations are very volatile; the species has a short life span, and exhibits drastic year-to-year changes. Although records of squid were not kept in the early years of the survey cruises, they were relatively low in abundance during most of the 1950's. In the late 1960 's, the population expanded rapidly and has continued to expand through the 1977 period (Lange and Sissenwine, in press). During this time, an extensive fishery was developed by the distant-water fleets. Since the implementation of the FMCA this fishery has continued but at lesser harvest levels. The U.S.A. fishery remains small. The 1978 fall survey index was low, but Loligo squid were abundant in the spring surveys at smaller lengths than usual, indicating that in 1978 there had been a late spawning. ${ }^{30}$ Thus, in terms of numbers, abundance remains at the high levels observed over the last decade.

Hlex Squid

Illex squid are a species with a short life span (about 1 year) which can also exhibit drastic changes in abundance from year to year. Since environmental conditions tend to be similar in adjacent years, abundant years tend to occur together, as do poorer years. In the last few
years Illex has been extremely abundant relative to numbers observed earlier (Lange and Sissenwine, in press). ${ }^{30}$ It is not known how long these high levels will continue, but it would certainly be expected that spawning would eventually result in lower stock sizes as observed previously. Illex is a wide ranging species from North Carolina to Newfoundland with extensive fisheries in Canadian waters. The extent to which fisheries in these areas may affect abundance in the Northeastern United States is not known.

Bluefish

Bluefish is a swift-swimming migratory pelagic species that is found in loosely aggregated feeding schools both inshore and offshore. Present knowledge of the distribution and abundance of bluefish is largely dependent on nearshore recreational and commercial catches with only supplemental data provided by bottom trawl catches of research vessels. Most information is therefore, limited to the period bluefish spend in coastal and estuarine waters. However, there is evidence that their distribution extends farther out on the continental shelf than is generally believed, as indicated by the absence of both large and small individuals during winter in South Atlantic waters and by the sporadic catches made by offshore otter trawlers (Wilk 1977).

Bluefish is one of the most important recreationallyfished species for both food and sport, far exceeding the commercial catches. The North Atlantic and Middle Atlantic anglers' catch was estimated at $16,765 \mathrm{~T}$ in 1960 (Clark 1962). It rose to $35,932 \mathrm{~T}$ in 1965 (Duel and Clark 1968) and to $45,305 \mathrm{~T}$ in 1970 (Duel 1973). The commercial catch range (1950-1970) for the New York Bight was between 90 and $1,220 \mathrm{~T}$ per year with an average value of 635 T per year. For the period 1973-1975, commercial landings increased to over $2,000 \mathrm{~T}$ per year. Throughout the 1970's, research vessels have frequently caught bluefish in offshore waters of the Middle Atlantic and Georges Bank. The 1976-1978 average stratified mean weight per tow is 26° - larger than the 1967-1969 average value. It has been observed that the age composition of the catches is also quite robust, with ages 4 and older being well represented. This would indicate that the condition of the stock is relatively stable, i.e., not dependent on one or two single year classes for continued recruitment. ${ }^{31}$

Tilefish

Bigelow and Schroeder (1953) estimated a potential sustainable yield of 1,000 to $1,500 \mathrm{~T}$ per year for tilefish off Southern New England, New York, and New Jersey, based on fishing reports of the 1900's. Landings since 1915 reveal that the harvest has fluctuated considerably, but it is difficult to translate this information into terms of relative abundance because market conditions have tended to dictate the level of landings more than abundance. Since the all-time high in 1916 of $4,500 \mathrm{~T}$ (when the U.S. Bureau of Fisheries first campaigned to promote a food fishery for tilefish, landings have fluc.
tuated greatly, reaching a low of 32 T as recently as 1968 . In 1977 about $2,000 \mathrm{~T}$ were reported; this increase was due largely to a rejuvenation of longlining out of New Jersey ports. Large party boats have contributed to a steady increase in the recreational fishery since 1969. However, recreational catch remains small relative to the commercial catch (Freeman and Turner 1977). Catches of tilefish in research surveys have been completely lacking in most years and extremely small in others, due to the habitat of the species which renders capture unlikely.

Total Finfish and Squid

Total finfish and squid refers to the biomass of all species with the exception of invertebrates other than squid, and also large pelagics (swordfish, sharks other than dogfishes, tunas) and certain other fishes such as menhaden, American eel, and white perch, which enter bottom trawl catches only infrequently. The decline in total biomass during the 1960's and early 1970's to an alltime low in 1975 was the strongest evidence of the extremely high overall fishing mortality generated by the distant-water fleets (Clark and Brown 1977, 1979). Since 1975, the resource has been increasing; present stock size is estimated to have approximately doubled the 1976 1978 average by weight. A large share of the increase is due to squid and most recently to herring and mackerel. The overall biomass is now approaching the levels that existed prior to the distant-water fleet fishing in the early 1960 's. ${ }^{32}$

DESCRIPTION OF TABLE

In the examination and interpretation of the status of fishery resources, it is important to consider some basic parameters of the populations and the potential of these populations for interrelationships and interactions in the ecosystem. We are attempting to do this by outlining the state of our knowledge for a large number of species in the accompanying tables. The table headings outline these key characteristics and a brief discussion of these characteristics follows.

1) Geographical range and stock structure.

The range of a fish population and the extent that it exceeds the boundary of a management unit have important implications for fisheries management. For example, management requirements are quite different for Loligo squid, which ranges only as far north as the edges of Georges Bank, than for Illex squid, which moves to the area off Newfoundland.
Consideration of stocks within the area breakdowns is also useful information. The term "stock" is a very nebulous one in the literature of biology. It basically implies that there is a group that has a high degree of integrity in its breeding population and exhibits similar patterns of growth and mortality rates throughout its range. It does not imply that there is no intermixing. Intermixing must occur to at least some degree or else
over time stocks would evolve into quite different species or subspecies. Intermixture between stocks can occur in a number of different ways. Stocks may separate during part of the year and be totally intermixed at other times. Sometimes this intermixture may be more or less random within the same schools, but at other times fish from different spawning stocks may occupy the same general area but exist in different schools. Furthermore, even within the area of greatest genetic integrity, that is within spawning concentrations, there may be a certain degree of mixture of fish from other areas. The important point is that there be enough separation among stocks so that interactions and effects on a stock from one area are not immediately seen in stocks from other areas.

Yellowtail flounder offer a classic example of stock structure. After a period of intense pulse fishing by the C.S.S.R. in the late 1960's, the Southern New England stock dropped drastically in abundance. If there were a large degree of intermixture with the stocks on Georges Bank. there would have been a rapid evening out of the available fish in both areas. However, this did not occur. The stock on Georges Bank maintained a higher level of abundance for several years after the decline in Southern New England.

Herring stocks are another example. Herring stocks on Georges Bank began to decline prior to those in the Nova Scotia area. The result of this decline was shown first in the lack of abundance of herring in the most southerly overwintering areas: that is, off Maryland and Virginia. Resident predator species in that area which depended on herring as forage shifted to other prey species instead of moving further north where herring were still abundant. This shows how stock structure may affect interactions between species. While this does not mean that management units must be based entirely on stock boundaries, it indicates that stock considerations may be important and that in evaluating the effects of management actions on the resource one needs to examine them.

2) Growth.

In the second column we list some of the basic biological parameters describing growth. The values given where available are:
(a) κ, which is a parameter from a von Bertalanffy growth equation (von Bertalanffy 1938), measures the rapidity of growth. The larger the κ the quicker the fish grow to $L \infty$. The species with the largest κ have the greatst potential for productivity, and also some of the greatest demands for food on the ecosystem.
(b) L ∞, from the same equation-the maximum length which an average fish would attain if it lived indefinitely. Individual fish may exceed that average.
(c) Maximum age, which indicates the length of time that an individual cohort is in the ecosystem and available to the fishery. This maximum age is not an extreme age, but only a rough indication of the
oldest fish that have been observed. Fish of this age would not be expected to be abundant in stocks where fishing pressure is heavy.

3) Age range in fished populations.

The age range in fished populations is one of the most sensitive measures of the stability in stock biomass and its productivity. We use the term 'fished populations' to refer to populations that are undergoing moderate fishing. The age range is not what would occur in an unfished stock nor does it include the very rare older fish in the moderately fished stock. We also describe the current range in age distribution with an indication of predominant year-classes. The comparison of the present range of ages with the past gives a good indication of whether or not the stock is now more variable than would occur under more moderate fishing.

4) Recruitment.

This column lists the relative range of observed age at recruitment and the most recent trends. Recruitment is generally thought to be governed by an underlying stockrecruitment relationship that comes into play primarily when a stock is at an extremely low level. However, the relationship, which limits the amount of eggs produced in the system, is then acted on by a plethora of environmental forces, such that good recruitment can come from even small spawning stock sizes and very poor recruitment from large stock sizes. Spawning stock size has its impact on the frequency of distribution of recruitment size. There is a greater probability of good year classes when spawning stocks are above some minimal level. These minimal levels, however, are not well known.

The range for average recruitment gives some indication of the variability of the stock and its sensitivity to various environmental factors. Recruitment rates range from quite stable, as in the case of cod, where observed recruitment values have fluctuated by no more than a factor between 2 and 3 , to those of haddock, where the ratio reaches almost 2,700 to 1 . It should be noted that the range for haddock during times of good population size is considerably less, roughly 20 to i , and that the very high variability mentioned above reflects the fact that a period of very low recruitment and spawning stock size was included. Not only was recruitment low when spawning stock size was low, but it was also more variable (1,200 to 1). ${ }^{9}$ The degree of variability is important when one considers that at present certain fisheries count almost entirely on production from entering vear classes. The more variable the year class, the greater the uncertainty in the size of a fishable population at a given time when it is made up of very few year classes.

5) Maturity.

The table shows age at the onset of maturity, and the size at maturity. This does relate somewhat to the effects of harvesting at younger ages. Obviously when harvesting is done prior to maturity, a lower rate of
harvest is required to allow the same spawning potential as when harvest begins at older ages. However, since in most cases the number of eggs produced relates to the weight of the fish and thus the age of the fish, there is, in general, an increase in potential egg production with increasing size. To get an indication of the meaning of this, we calculate the age at which, under a nonfishing situation, the maximum egg production would occur for a given year class. This is a product of the number at age from mortality rate curves for the mature component of the population, the weight at age (assumed proportional to fecundity) from growth curves, and the fecundity at weight relationships. The length of the spawning season is also given. The implication of this, of course, is that those stocks with small spawning areas and/or times would be expected to have wider fluctuations due to environmental variations than stocks with broader spawning areas and longer spawning seasons. For certain specialized stocks such as dogfish, which produce very small numbers of young and spawn perhaps every other year, such pertinent items are noted.

6) Natural mortality (M).

Natural mortality rates are one of the most difficult parameters of fish populations to estimate. Many of the values here are only approximations. They all apply to fish of sizes which can be recruited into the fishery, and larger. The higher the mortality rate the more rapidly the fish die, and the more rapidly, at younger ages, one would expect to harvest them. Low mortality rates imply a stock that would maintain itself for a considerably longer period of time. For example, at a mortality rate point of 0.2 and no fishing, one would expect $18^{\circ} \circ$ of the population at the beginning of the year to die of natural causes over the year, whereas in a population where $\mathrm{M}=$ $0.4,33 \%$ would be expected to die during the year. Since, to a certain extent, harvesting replaces natural mortality with fishing mortality, (by catching some fish that would die naturally) the higher the natural mortality the more fish that can be harvested in a given year. When this is combined with growth, however, greater yields may come over time from individuals with lower mortality rates and an opportunity to accumulate more growth in weight in the population prior to being harvested.

7) Fishing mortality.

$\mathrm{F}_{\text {max }}$ is a fishing mortality rate which would result in the maximum possible yield being obtained from harvesting a given cohort or year class. Fishing at the $\mathrm{F}_{\text {max }}$ level has been shown in a number of cases to result in very low spawning stock sizes. Hence, an alternative value $\mathrm{F}_{0,1}$ (Gulland and Boerma 1973) has been recommended by ICNAF in its later years, by scientific advisers to ICES, and by Canadian scientific committees after the 200 -mile limit. This is a value less than $\mathrm{F}_{\max }$ which gives almost as much yield as one would achieve by fishing at $\mathrm{F}_{\text {max }}$ but which results in a considerably higher stock size and a much greater catch per unit effort for individual vessels.
$\mathrm{F}_{\text {max }}$ and $\mathrm{F}_{0,1}$ are given in the table when available, for both conditional and optimal cases. The conditional case assumes that the present age at entry into the fishery will remain constant, and chooses the best fishing mortality rate according to the definitions of $\mathrm{F}_{\text {max }}$ and $\mathrm{F}_{0,2}$. The other F values given refer to the overall maximum, i.e., when age at entry into the fishery is included in the maximizing procedure.

Finally, an estimate of current F is presented. Where F is considerably above $\mathrm{F}_{\text {max }}$ and $\mathrm{F}_{0.1}$, reductions in F will give a higher yield per recruit, a larger spawning stock, and in many cases an overall total increase in yield along with a greater catch per unit of effort. Where it is considerably below $\mathrm{F}_{0, i}$, room for expansion is indicated.

8) Abundance.

This column lists the condition of the current stock size relative to historic levels in terms of population size. The information in the column is based on both fishery and research vessel survey data.

A simple index was devised to suggest what confidence we can place in estimates of population size trends. A rating of 1 indicates that the relative change in population size with time is considered by the assessment group at the Northeast Fisheries Center, National Marine Fisheries Service, NOAA, to be measured with considerable precision. Ratings of 2 and 3 are considered moderate or poor. while a rating of 4 indicates that the information available gives only very modest improvement over accepting the informationless state of assuming the size to be within the historic range of observed values for the stocks. Our level of confidence is influenced by the level of variability in the resource as well as by our analytical methods; it is much easier to describe large fluctuations in abundance than small ones.

It should be noted that these are very difficult kinds of ratings to make: they are, in a sense, gamblers' hunches. There is a great deal of knowledge about certain stocks. and this may be adequate, depending upon the management goal. On the other hand, even the most precise estimates of stock size possible do not pretend to estimate the stock size exactly. Estimates at any moment can only provide guidelines which adhered to over time can help to achieve management goals. They cannot be separated from management objectives but serve as necessary numerical values for developing management measures. The variance about any single point estimate may be large but the study of trends and biological characteristics provides significant information to make assessment of the stocks a valid description of relative conditions and projections of longer term results of particular harvest strategies.

The present condition of a stock relative to its historic condition is the point about the assessment which is the most valid and the most useful for decision making. When stocks are abundant, they are fairly robust against a very large number of socioeconomically oriented management objectives; i.e., management goals can be
flexible. If the stocks are not in good condition, management strategies aimed at short-term ends can have quite different long-term effects. In any case, it is the relative condition of the stock which can be reliably assessed, not the yearly stock size.

9) Maximum sustainable yield.

This measure (MSY) provides a useful guide to the long-range biological productivity of the stocks, provided that the limitations of MSY are kept in mind. The maximum sustainable yield given here is based in some cases on analytical models, and in other cases it is based on observations of long-range historical catch averages. It gives an indication, not of what might be taken in any given year, but of what might be taken on the average over time, with some years being above average and some years below. That is, MSY permits potential productivity of stocks to be compared in a general way.

Year-to-year variations are due to fluctuations in environmental conditions and condition of the stock. In some cases. depending upon the history of the fishery, the year-to-year variation is greatly affected by previous fishing practices. In general, there has been no attempt to calculate an MSY that could actually be harvested on the average over time. It should be kept in mind that if one were to hold catch at the MSY level, the stock would likely decrease and the resulting average catch would be lower than the MSY value that initiated the action. In certain cases this also holds true for effort being fixed at the levels of harvest for MSY (Doubleday 1977; Sissenwine 1978). Nevertheless, the comparison of the values given here do give rough indications of the differences between stocks and their general long-range productivity.

10) By-catch.

The final column lists by-catch and distribution. One of the most important considerations in mixed fisheries is that a unit of effort may be directed at several species at the same time. Furthermore, a unit of effort directed primarily at one species will catch, less effectively, species that are associated with it in the environment. Finally, in the mixed fishery situation even if a fisherman is capable of directing effort to a relatively pure species catch, when other species of value are located close by, the trip often consists of directed effort at several species; to make an economically viable trip, fishing is directed at several species. This column lists the historically-observed by-catches, where data are available, and also makes inferences from the seasonal, horizontal and vertical distribution patterns of various species. For example, certain species which migrate through the water column may vield relatively pure catches when they are high in the water column, but when they are on the bottom during other parts of the day they become components of the mixed trawl fishery. Other species occupy seasonally quite separate areas, so that the bv-catch at different periods of the year may be quite different both in amount and in species composition.

Basic life history data in this table follows Bigelow and Schroeder (1953) and Grosslein and Azarovitz (in press). Spawning times are based primarily on Colton et al. (1979). Information is taken from the documents cited in the text as augmented by unpublished data in the files of the Northeast Fisheries Center.

In summary, the information in the table furnishes important background information upon which decisions regarding resource utilization can be realistically made.

SUMMARY AND CONCLUSIONS

During the last twenty-five years, the fishery resources of the waters off the coast of the Northeastern United States underwent a large increase in fishing mortality. The fishery changed from one concentrated on relatively few stocks to a wide-based industry directed at the total finfish and squid biomass. Total resource abundance declined as a result and the annual harvest exceeded total productivity. Since 1975, the trend has been reversed, overall fishing effort has declined and the stocks have begun to recover, now approaching levels that existed prior to entry of the distant-water fleets. Certain components of the resources (e.g. haddock) were fully exploited prior to the entry of the distant-water fleets and continue to be so today; in these stocks conditions still exist such that the potential fishing effort can harvest in excess of annual productivity. Some stocks with a low capacity to rebuild, such as redfish, yellowtail flounder, and haddock, suffered extremely heavy fishing mortality imposed by distant-water fleets over and above that already existing from domestic harvesters. Yeilowtail in the offshore areas are still below abundance levels of earlier times. Haddock, although recovered in total abundance, do not yet have the stable structure of a population capable of consistently sustaining high harvests. Nevertheless, indications of future recruitment give hope for achieving this goal within the foreseeable future.
Of the larger offshore stocks fished primarily by distant-water fleets, only Atlantic herring on Georges Bank have not yet demonstrated a start towards recovery to earlier levels. Even here, however, the potential for a good incoming year class currently exists and if such a year class contributes significantly to the spawning stock for a period of time, even the offshore herring stocks could approach values observed historically prior to consistent heavy fishing. As the total resource builds to a level at which annual productivity is maximized, or in some cases beyond that level, the concept of stability must be considered only as an average over all the resources using the energy flow in the system.

Yearly environmental fluctuations create wide ranges of abundance within particular species. These fluctuations can be dampened or accelerated depending on
the fishery management practices pursued, but they will continue to be a major feature of fishery resources now as in the past.

ACKNOWLEDGEMENTS

The authors wish to thank the members of the Northeast Fishery Management Task Force Subcommittee on Status of the Resources: V. C. Anthony, D. Amold, and J. Mason for their contribution to developing the areas to be covered in this document. M. Aleon and R. R. Lewis of the Northeast Fisheries Center assisted in the preparation of materials for this document. E. D. Anderson and M. P. Sissenwine provided critical editorial assistance. The NEFC Assessment Division staff critiqued particular species statements.

FOOTNOTES

1. Common names as in Bailey ed., 1970.
2. Serchuk, F. M., P. W. Wood, and B. E. Brown. 1978. Summary and review of the 1978 assessment and status of the Gulf of Maine and Georges Bank cod stocks. Northeast Fisheries Center, Woods Hole Laboratory, National Marine Fisheries Serv., NOAA, Woods Hole Lab. Ref. Doc. 78-11, (mimeo.) 18 p. 3. Serchuk, F. M., and P. W. Wood. 1979. Review and status of the Southern New England-Middle Atlantic cod, Gadus morhua, populations. Northeast Fisheries Center, Woods Hole Laboratory, National Marine Fisheries Serv., NOAA, Woods Hole Lab. Ref. Doc. 79-37, (mimeo.) 77 p.
3. Serchuk, F. M., P. Wood. S. H. Clark, and B. E. Brown. 1977. Analysis of the Georges Bank and Gulf of Maine cod stocks. Northeast Fisheries Center, Woods Hole Laboratory, National Marine Fisheries Serv., NOAA, Woods Hole Lab. Ref. Doc. 77-24, (Mimeo) 26 p.
4. Serchuk, F. M., P. W. Wood, and B. E. Brown. 1978. Atlantic cod (Gadus morhua): assessment and status of the Georges Bank and Gulf of Maine stocks, January 1978. Northeast Fisheries Center, Woods Hole Laboratory, National Marine Fisheries Serv., NOAA, Woods Hole Lab. Ref. Doc. 78-03, (mimeo.) 25 p .
5. Serchuk. F. M., P. W. Wood, R. Lewis, J. A. Penttila, and B. E. Brown. 1979. Status of the Georges Bank and Gulf of Maine cod stocks, February 1979. Northeast Fisheries Center, Woods Hole Laboratory, National Marine Fisheries Serv., NOAA, Woods Hole Lab. Ref. Doc. 79-10, (mimeo) 32 p .
6. Hennemuth, R. C. 1969. Status of the Georges Bank haddock fishery. Int. Comm. Northw. Atlant. Fish. Res. Doc. 69/90, (mimeo), 21 p .
7. Clark. S. H., and W. J. Overholtz. 1979. Review and assessment of the Georges Bank and Gulf of Maine haddock fishery. Northeast Fisheries Center. Woods Hole Laboratory, National Marine Fisheries Center, Woods Hole Lab. Ref. Doc. 79-05, (mimeo.) 68 p .
8. Hennemuth. R. C.. J. E. Palmer, and B. E. Brown. 1979. Recruitment distributions and their modality Part 1: description of recruitment on 18 selected fish stocks. Int. Cons. Explor. Sea. C.M. 1979/H:57., (mimeo.) 24 p.
9. Clark. S. H., T. S. Burns, and B. P. Hayden. 1978. An assessment of the Scotian Shelf, Gulf of Maine, and Georges Bank pollock stock. Northeast Fisheries Center, Woods Hole Laboratory, National Marine Fisheries Service, NOAA, Woods Hoie Laio. Ref. Doc. 78-37. (mimeo.), 33 p.
10. Anderson, E. D., 1974. Comments on the delineations of red and silver hake stocks in ICNAF Subareas 5 and Statistical

Areas 6. Int. Comm. Northw. Atlant. Fish. Res. Doc. it 100. (mimeo.), 7 p .
12. Anderson, E. D., and F. P. Almeida. 1979. Assessment of the southern New England-Middle Atlantic red hake stock. Northeast Fisheries Center, Woods Hole Laboratory, National Marine Fisheries Service, NOAA, Woods Hole Lab. Ref. Doc. No. 79-06. (mimeo.), 27 p .
13. Almeida, F. P., E. D. Anderson, and H. A. Herring. 1979. Status of the Georges Bank red hake stock in 1978. Northeast Fisheries Center, Woods Hole Laboratory, National Marine Fisheries Serv., NOAA, Woods Hole Lab. Ref. Doc. 79-01. (mimeo.), 21 p .
14. Clark, S. H., and B. P. Hayden. 1978. A review of the current status of white hake (Urophycis tenuis) in the Georges Bank/Gulf of Maine area. Northeast Fisheries Center, Woods Hole Laboratory, National Marine Fisheries Serv., NOAA. Woods Hole Lab. Ref. Doc. 78-29, (mimeo.), 7p.
15. Anderson, E. D., and W. J. Overholtz. 1979. Status of the Northwest Atlantic mackerel stock-1979. Northeast Fisheries Center. Woods Hole Laboratory, National Marine Fisheries Serv., NOAA, Woods Hole Lab. Ref. Doc. 79-35, (mimeo. 1.36 p.
16. Davis, W. S., and C. C. Taylor. 1957. Optimum exploitation of Gulf of Maine redfish as indicated by a simple population model. Int. Comm. Northw. Atlant. Fish. Int. Coun. Explor. Sea., Food Agri. Org.. Joint Sci. Meet., Lisbon, Port. (mimeo.). 31 p.
17. Brown, B. E., and R. C. Hennemuth. 1971. Assessment of the yellowtail flounder in Subarea 5. Inter. Comm. Vorthu Atlant. Fish. Res. Doc. 71/14. (mimeo,) 5 : p.
18. Sissenwine, M. P.. B. E. Brown, M. M. McBride. 1978. Yellowtail flounder (Limanda ferruginea): status of the stock-. January 1978. Northeast Fisheries Center. Woods Hive Laboratory, National Marine Fisheries Serv.. NoAA. Wouds Hole Lab Ref. Doc. 78 -02. (mimeo. 1.25 p.
19. McBride. M. M., and M. P. Sissenwine. 1979. Yellowtail flounder (Limanda ferruginea): status of the stocks. February 1979. Northeast Fisheries Center. Woods Hole Laboratory. National Marine Fisheries Serv.. NOAA. Woods Hole Lab. Ref. Doc. 79-06, (mimeo.), 17 p .
20. Lange, A. M. T.. and F. E. Lux. 1978. Review of the other flounder stocks (winter flounder, American plaice. with flounder, and windowpane flounder) off the Northeast United States, August 1978. Northeast Fisheries Center. Woods Hole Laboratory, National Marine Fisheries Serv., NOAA. Woods Hole Lab Ref. Doc. 78-44, (mimeo.), 45 p.
21. Henderson, E. M. 1979. Summer flounder (Paralichthys dentatus) in the Northwest Atlantic. Northeast Fisheries Center, Woods Hole Laboratory, National Marine Fisheries Serv., NOAA. Woods Hole Lab. Ref. Doc. 79-31, (mimeo.). 31 p. 22. Johnson, H. B., B. F. Holland. and M. W. Street. 1978. Biology and management of Mid-Atlantic anadromous fishes under extended jurisdiction. Annual Rept. Anadromous Fish Project. Va. Inst. Mar. Sci., Gloucester Point, Va.
23. Mayo. R. 1979. Northeast Fisheries Center. Woods Hole Laboratory, National Marine Fisheries Serv., NOAA. Woods Hole, MA. Pers Comm. Oct. 1979.
24. Waring, G. T. 1980. A preliminary stock assessment of the little skate. Raja erinacea, in the Vorthuest Atlantic. MAt thesis. Bridgewater State College, 122 p , Iunpublished)
25. Waring, G. T., 1979. Status of the Northwest Atiantic butterfish stock, July 1979. Northeast Fisheries Center, Woods Hole Laboratory. National Marine Fisheries Serv.. NOAA. Woods Hole Lab. Ref. Doc. 79-33. Imimeo.), 12 p.
26. Grosslein. M. D. 1974. A first approximation of MSY for spiny dogfish in Subareas $3 \& 6$ and Division 4 X . Int. Comm. Northu. Atlant Fish Res Doc. it 30. Ser No. 317 T mimeo.: 1 p .
27. Soldart. V. T. 1979. Biology, distribution, and abundance of the spiny dogfish in the Northwest Atlantic. Int. Comm. Northu. Atlant. Fish. Res. Doc. No. 79/Cl/102, Ser. No. 5467 (mimeo.). 9 p.
28. Appolonio, B.. and E. E. Dutton, Jr. 1969. The northern shrimp (Pandalus borealis) in the Gulf of Maine. Completion Rept. Com. Fish. Res. Development Proj. 3-12-R (mimeo.), 82 p.
29. Clark. S. H.. R. J. Essig, and D. Hansford. 1979. Gulf of Maine Northern shrimp-current status and future outlook. Northeast Fisheries Center, Woods Hole Laboratory, National Marine Fisheries Serv.. NOAA, Woods Hole Lab. Ref. Doc. 795l. (mimeo.), se p.
30. Lange, A. M. T. 1979. Squid (Loligo pealei and Illex illecebrowus) stock status update, July 1979. Northeast Fisheries Center. Woods Hole Laboratory, National Marine Fisheries Serv., NOAA. Woods Hole Lab. Ref. Doc. 79-30, (mimeo.), 17 p.
31. Anderson. E. D., and F. P. Almeida. 1979. Assessment of the bluefish (Pomatus saltatrix) of the Atlantic coast of the United States. Northeast Fisheries Center, Woods Hole Laboratory. National Marine Fisheries Serv., NOAA. Woods Hole Lab. Ref. Doc. 79-19, (mimeo.), 15 p .
32. Resource Assessment Division. 1979. Summary of stock assessments-1979. Northeast Fisheries Center, Woods Hole Laboratory. National Marine Fisheries Serv., NOAA. Woods Hole Lab. Ref. Doc. 79-41, (mimeo.), 27 p.

LITERATURE CITED

Anderson. E. D. 1979. Assessment of the Northwest Atlantic mackerel. Scomber scombrus, stock. U.S. Dept. Commer., VoAA Tech. Rep., Vat. Mar. Fish. Serv. SSRF-732. 63 p.
Anderson. E. D.. F. E. Lux and F. P. Almeida. 1980. The silver hake stocks and fishery of northwestern United States. Mar. Fish. Ret. $42(1): 12 \cdot 20$.
Anderson. E. D. and A. J. Paciorkowski. In press. A review of the Northwest Atlantic mackerel fishery. Rapp. P.-V. Reun. C'on. Int. Explor. Mer. 17T.
Anthony, V. C., and S. H. Clark. 1978. A description of the northern shrimp fishery and its decline in relation to water temperature. In: Climate and Fisheries. Ctr. for Ocean Mgt. Studies. Univ. of Rhode Island: 119-121.
Anthony. V. C.. and G. T. Waring. 1980. The assessment and management of the Georges Bank herring fishery. Rapp. P.-V. Reun. Cons. Int. Explor. Mer. 177: 72-111.
Anthony. V. C., and G. T. Waring. In press. A review of the herring fisheries, their assessment, and management in the Georges Bank-Gulf of Maine area. Alaska Sea Grant.
Bailey, R. M. ed. 1970. A list of common and scientific names of fishes from the United States and Canada. 3rd Ed. Am. Fish Soc. Spec. Publ. 6: 149 p.
Bigelow. H. B.. and W. E. Schroeder. 1953. Fishes of the Gulf of Maine. Fish. Bull. 53:577 p.
Brown, B. E., J. A. Brennan, E. G. Heyerdahl, M. D. Grosslein, and R. C. Hennemuth. 1976. The effect of fishing on the marine finfish biomass of the Northwest Atlantic from the eastern edge of the Gulf of Maine to Cape Hatteras. Int. Comm. Vorthu. Atl. Fish. Res. Bull., 12: 49-68.
Clark. J. R. 1962. The 1960 sait-water angling survey. U.S. Fish Wildl. Serv. Circ. 153. 36 p.
Clark, S. H. 1979. Application of bottom-trawl survey data to fish stock assessment. Fisneries 4(3): 9-15.
Clark. S. H.. and V. C. Anthony. In press. An assessment of the Gulf of Maine northern shrimp resource. Proceedings, First

International Pandalid Shrimp Workshop, Kodiak, Alaska, 1315 February 1979, 21 p.
Clark. S. H., and B. E. Brown. 1977. Changes in biomass of finfishes and squids from the Gulf of Maine to Cape Hatteras. 1963.74. as determined from research vessel data. Fish. Bull. L:S. 75: 1-22.
Clark, S. H.. and B. E. Brown. 1979. Trends in biomass of finfishes and squids in ICNAF Subarea 5 and Statistical Area 6 1964-1977, as determined from research vessel survey data. Investigacion Pesquera 43(1): 107-122.
Clark, S. H.. T. S. Burns, and R. G. Halliday. 1977. Assessment of the pollock fishery in ICNAF Division 4VWX and Subarea 5. Int. Comm. Northw. Atlant. Fish. Sel. Pap. (2): 1532.

Clark, S. H., and R. Livingstone, Jr. In press. Ocean pout (in Ecology of Middle Atlantic Bight fish and shellfish) MESA Neu' York Bight Atlas Monograph 15. Albany, NY, New York Sea Grant Institute.
Colton. J. B.. Jr.. W. G. Smith, A. U. Kendall, Jr., P. L. Berrier. and M. P. Fahey. 1979. Principal spawning areas and times of marine fishes, Cape Sable to Cape Hatteras. Fish. Bull. US 76(4): 911-915.
Conover. J. T.. R. L. Fritz, and M. Viera. 1961. A morphometric study of silver hake. L.S. Fish. Wildl. Sert. Spec. Sci. Rept.-Fish. 378, 13 p.
Doubleday. W. C. 1976. Environmental fluctuations and fisheries management. Int. Comm. Northu. Atl. Fish., Sel. Pap. (1): 141-150.
Dow. R. L. 1977 . Natural abundance fluctuations in the Maine shrimp fishery. National Fisherman March 1977.
Duel, D. G.. 1973. 1970. Salt-water angling survey. U.S. Dept. Commer.. NOAA, Natl. Mar. Fish. Serc., Curr. Fish. Stat. 6200. 54 p.

Duel, D. G., and J. R. Clark. 1968. The 1965 salt-water angling survey. L'S. Fish Wildl. Serc., Resour. Publ. 63.51 p .
Freeman. B. L.. and S. C. Turner. 1977. Biological and fisheries data on tilefish, Lopholatilus chamaeleonticeps Goode and Bean. Sandy Hook Lab.. Northeast Fisheries Ctr.. Nat. Mar. Fish. Serv.. VOAA Tech. Ser. Rept. 5: 41 p.
Grosslein, M. D. 1969. Groundfish survey program of BCF Woods Hole. Commer. Fish. Rev. 31(8-9): 22-35.
Grosslein. M. D., and T. R. Azarovitz. In press. Ecology of Middle Atlantic Bight fish and shellfish. MESA New York Bight Atlas Monograph 15. Albany, NY: New York Sea Grant Institute.
Gulland. J. A.. and L. K. Boerma. 1973. Scientific advice on catch levels. Fish. Bull. LS, 71(2): 225-335.
Holden, M. J. 1968. The rational exploitation of the ScottishNorwegian stocks of spurdogs (Squalus acanthias L.). Fish. Invest., Lond. Ser II, XXV $(8): 28$ p.
International Commission Northwest Atlantic Fisheries. 1953. Annual Proceedings Vol. 3. Int. Comm. Northw. Atlant. Fish., Halifax, N.S., Can.
International Commission Northwest Atlantic Fisheries. 1967. Statistical Bulletin Vol. 15. Int. Comm. Northw. Atlant. Fish. Halifax. N.S. Can.
International Commission Northwest Atlantic Fisheries. 1971. Statistical Bulletin Vol. 19. Int. Comm. Northw. Atlant. Fish., Halifax. N.S. Can.
International Commission Northwest Atlantic Fisheries. 1972a. Statistical Bull. Vol. 20. Int. Comm. Northw. Atlant. Fish., Halifax. N.S., Can.
International Commission Northwest Atlantic Fisheries. 1972b. Statistical Bull. Vol. 21. Int. Comm. Northw. Atlant. Fish., Halifax. N.S.. Can.

International Commission Northwest Atlantic Fisheries. 1973. Proceedings of the special commission meeting January 1973 and the 23rd Annual Meeting June 1973. Int. Comm. Northw. Atlant. Fish. Halifax, N.S.. Can.
International Commission Northwest Atlantic Fisheries. 1974a. Statistical Bull. Vol. 22. Int. Comm. Northw. Atlant. Fish. Halifax. N.S.. Can.
International Commission Northwest Atlantic Fisheries. 1974b. Proceedings of the Third Special Meeting October 1973. Int. Comm. Northw, Atlant. Fish.. Halifax, N.S., Can.
International Commission Northwest Atlantic Fisheries. 1975. Statistical Bulletin Vol. 23. Int. Comm. Northw. Atlant. Fish., Halifax, N.S.. Can.
Iensen. A. C. 1965. Life history of the spiny dogfish. Fish. Bull. [.S. 6543): 527-554.
Kelly, G. S., and R. S. Wolf. 1959. Age and growth of the redfish, Sebastes marinus, in the Gulf of Maine. Fish. Bull., U.S., 69: 1-31.
Kendall. A.W. 1977 Biological and fisheries data on black sea bass. Centropristis striata (Linnaeus), Sandy Hook Lab., Northeast Fish. Ctr., Nat. Mar. Fish. Serv., NOAA Tech. Ser. Rept. 7, 29 p.
Kendall. A. W.. and L. P. Mercer. In press. Black sea bass (in Ecology of Middie Atlantic Bight fish and shellfish) MESA Veu York Bight Atlas Monograph 15. Albany, NY, New York Sea Grant Institute.
Lange. A. M. T.. and M. P. Sissenwine. In press. Biological considerations relevant to the management squid (Loligo pealie and Illex illecebrosus) of the Vorthwest Atlantic. NOAA Technical Repurt.
Lux, F. E. 1969. Landings per unit of effort, age composition, and total mortality of vellowtail flounder (Limanda ferruginea Storer). off New England. Int. Comm. Northu: Atlant. Fish. Res. Bull. (6): $\overline{4}-52$.
Mayo. R. M. In press, An assessment of the Gulf of Maine red. fish. Sebastes marinus L. Int. Comm. Northw. Atlant. Fish. Res. Bull.
Morse. W. W. 19:8. Biological and fisheries data on scup. Stenotomus chrysops (Linnaeus). Sandy Hook Lab.. Northeast

Fish. Ctr., Nat. Mar. Fish. Serv. NoAA Tech. Ser. Rept. 1t: 41 p .
Murawski, S. A., D. G. Frank. and S. Chang. 1978. Biological and fisheries data on butterfish. Peprilus triacanthus Peck. Sandy Hook Lab. Northeast Fish. Cer., Nar. Mar Fish. Serv NOAA Tech. Ser. Rept. 6. 39 p.
Murawski, S. A., and G. T. Waring. 1979. A population assessment of butterfish. Peprilus triacanthus, in the Northwestern Atlantic Ocean. Trans. of the Amer. Fish. Soc. Vol. 108. No. Sept. 1979. pp. 427-439.
Royce. W. F., R. J. Buller, and E. D. Premetz. 1959. Decline of the yellowtail flounder (Limanda ferruginear off New England. Fish. Bull. L.S. 59: 169-267.
Sette, O. E. 1950. Biology of the Atlantic mackerel (Scomter scombrus) of North America. Part 2 . Migrations and habits. Fish. Bull. (S. 51(49): 251-358.
Sheehy, D. J.. M. P. Sissenwine. and S. B. Saila. 1974. Ocean pout parasites. Mar. Fish. Ree 36(5): 29-33
Sissenwine. M. P. 1977. A compartmentalized zimulation model of the southern New England yellowtail tlounder. Limandaferruginea, fishery, Fish. Bull. C.S. 7513: 405-452.
Sissenwine. M. P. 1978. Is MSY an adequate toundation for optimum yield? Fisheries 3(6): 24-42.
Von Bertalanffy. L. 1938. A quantitative theory of organic growth (inquiries on growth laws II). Human Bulugy 10: 151128.

Wigley, R. L. 19:3. Fishery for northern shrimp in the Guit ot Maine. Mar. Fish. Res. 35(3-4): 9-14.
Wilk, S. J. 1977. Biological and fisheries data on oluetish. Pomatomus waltatrix (Linnaeus). Sandy Hook Lab.. Vortheasi Fish. Ctr.. Nat. Mar. Fish. Serv. NoAd Tech. Ser. Rep. 11. 50p.
Wilk, S.J., W.G. Smith, D.E. Ralph, and J. Sibunka (4x). The population structare of summer flounder between \therefore.$\} . and$ Florida based on linear discriminant analvsis. Trans, is. Amer, Fish. Soc: 109(3): 265-271.
Wise. J. 1962. Cod groups in the New England area. Fi,h. Bu: U.S. 63: 189-203.

Figure 1. Major geographical areas off the Northeast coast of the United States.

Figure 2. Relative percentages of recreational, foreign and U.S. commercial catch to the total catch for each species in the year 1970 tor areas shown in Fig. 1.

Figure 3. U.S. and foreign commercial catch values (mean total annual catch 1969-1978) and mean recreational catch from the 1960, 1965 and 1970 Saltwater Angler survey area shown in Fig. 1

Figure 4. Salt water angling effort: 1960, 1965 and 1970.

Table 1
1978 Total Catch (MT) North and Middle Atlantic Regions as shown in Fig. 1

	US	Foreign	Total
Atlantic Cod	39,020	26,495	65,515
Haddock	16,695	10,821	27,516
Pollock	17,542	4,754	22,296
Silver Hake	23,151	14,475	37,626
Red Hake	2,192	2,155	4,347
White Hake	3,818	195	4,013
Atlantic Mackerel	1,604	370	1,974
Redfish	13,991	170	14,161
Yellowtail Flounder	11,454	59	11,513
Winter Flounder	12,246	64	12,310
Summer Flounder	8,451	12	8,463
American Plaice	9,511	209	9,720
Windowpane Flounder	1,824	0	1,824
Witch Flounder	3,520	18	3,538
Atlantic Herring	50,516	585	51,101
River Herring	5,789	32	5,821
Black Sea Bass	2,112	0	2,112
Skates	1,595	226	1,821
Scup	9,413	2	9,415
Butterfish	3,664	1,236	4,900
Dogfish	1,192	558	1,750
Angler (Goosefish)	1,808	39	1,847
Ocaan Pout	330	0	330
Northern Shrimp	4	0	4
Loligo	1,476	4,777	6,253
Illex	385	21,458	21,843
Bluefish	3,751	0	3,751
Tilefish	3,413	1	3,414

Table 2
Annual U.S. and Foreign Commercial Landings for Major Species 1969-1978
for areas shown in Fig. 1

Table 3
Resource Summary Table

BDOOCK
$3 \mathrm{LaC} \mathrm{\%}$

From Labrador -
ies: Treenland to
wape tacterss.
i: 'ova scotia, on $\therefore 0$ SNE

Mean age: 3.5
Ratio 1.8-1 for 1971-1973
(age 2). 11.6-1 for 1961-1978 North Atlantic
ature by age 5
Soawn in Massachusetts
Bay, 5 teliwagen, and So. Channel. Noy-*ar. Peak late bec.

3:1:2 24×5
Fron tewfouncland Banks
Mean age: $2 \quad$ First soawn 2-3 yr
:3 5a. Sarolina
$1 \vdots 30$

PET HAKE

Mean age: 3
Related to size of sea scallop population due to symbiotic relationship in juvenile stage.

Ratio 2.14-1 for 1968-1978.
$=0.24 E \quad 0.132 \quad 0.416$

Patic 12.1-1 for 1955-1978. Snawn Jun-sep, princinally Jui, Aug, on NE GB and Central GM, earlier on SNE
Max egg production: age 4

```
MITE -AKE
```


From suter Lawr.
and and Sank tewt Lna $\int_{\text {ne }}$ vot avaitable. - : troinia
:Scotian shely to ge

Vax. age $=23 \mathrm{yr}$ 4ax. length $=122 \mathrm{~cm}$
First soawn 2 yr

Spawn in summer on So Georges and vantucket Shoals.
Net known.
$\frac{\text { xey }}{58}=$ Georges Bank
T8 $=$ Seorges Bank
SNE Southern New England
SNE $=$ Southert New England
$M A=$ Middle Atlantic
$M A=$ Middle Atlantic
$S M=$ Gulf of Maine
$S M=$ Gulf of Maine
$C C=$ Cape Cod
tot known.

	Net known.
E4	
98	- Seorges Bank
SME	= Southern New England
M	= Middle Atlantic
34	- Gulf of Maine
$C \mathrm{C}$	\% Cape Cod

 Spawn on Concirental
 Slooe of mA Bight
 in summer.
 Spawn on Concirental in summer.

Table 3. cont'd

Matural Mortality	Fishing Mortality	Abuncance	4sy	by-catch/ jistriastion

(cont.)

$\mathrm{M}=0.2$	civ	GB
	$F_{0.1} 00.16$	0.15
	$F_{\text {max }}=0.3$	yr)

HADCOCK (cont:

$$
\begin{aligned}
M=0.2 \quad & F_{0.1}=0.26 \\
& F_{\text {max }} * 2.55 \\
& =\text { msy }=0.5-0.55 \\
& F_{\text {for fully }} \text { recruited } \\
& \text { ages nas approx. } 0.2 \\
& \text { since } 1973 .
\end{aligned}
$$

Rank 2
Both GM and 68 cod seem at abundant popula-
tion condition. 581978 autumn index is
123% greater than 1963 -1978 average (1978
increased 35% over 1977). GM 1978 autum
index is 38 : greater than 1963-1978 average (1978 27\% over 1977).
$G Y=8,000 \dagger$
$G 0=35,000$

Haddock, Dollock, yellowtall. other flounders, troundfisn.

Qemersal

GB stock migrates southwest in autumn.

Rank 1
Recent dramatic increase due to 1975 year
class. Tot. pop. abundance reaching range of
$1930-1950$, but overbalanced toward a single
year class, GB 1978 fall index 23 iess
than 1963-1978 average. GM 1978 fall inaex
88\% greater than 1963-1978 average.
$02=40-50,000 T$

Cod, yellowtall, otner flounders. other groundfish.

Demersai
Move insnore off dew Enctand between ian and June.

Rank 3.
Relatively strong abundance $G 81977$ fall index 32\% grester than 1963-1977 averace GM 1977 fall index 81% greater than 1963 1977 averaçe. Scotian Snelf 1977 fall index 27\% less than 1963-1977 average.

42,000 T for Nova
Scotia Shelf, GM, 68, SNE

Werring fall onlyl, groundfish when fisning on bottom.

Pelagic/Demersa!
Seasonal soawning movements to western GM, Scotian Snelf

Rank 3.
GM stock recovering, remains less than
beak, early 50 's. GS and SNE stock in
good condition but less than peak
abundance. 60 9077 fall index 3 :
greater than 1963-1977 average. 3y
1977 fall index 17^{*} greater than 1963-
1977 average. SNE-MA 1977 fall index
22\% less than 1903-1977 average.
$38=55,000 \%$
$\begin{array}{ll}0 M & =17,000 \% \\ S N E-W A & =35,000\end{array}$

Tec hake, nackergy, other groundf
Semersal Pelagic
censest offshore, tigrates shoranard soring, surmer. yy ziant fish morate East to site waters in sumer.

RED HAKE (cont.)

M $=3.4$		F0.1 Fe,	irrent
	06	- 0.85	2.10
	SNE MA	$=0.45$	0.18
	Fmax not	t a cal	culab?e valu

Rank 3

in seneral $\quad \mathrm{Ga}=13,000$
In general, stock appears in low condition. SNEMA $=26,000 \mathrm{~T}$解 average. SNE-MA 1977 fall index 23\% less than $1963-1977$ average; has fluctuated considerabiy since 60 's.

Rank 4
1978 survey index zqual to $1969-1978$ average.

silver nake, assorted flounders. groundfish

Semersal
Buring autumn acults are eoth inshoreloffsnere, but in winten and early spring they agorequte in deeper, offshore areas.

> ?ed nake, other grounafisn. Cemersal
> insnore movement in ig ana SNE in autimn

Table 3. cont'd

Geographical range; stock structure	Growth	Ace range in fished populations	Recruitment	4aturity

HACXEQEL

From Block is. Labrador to Seaufort, NC

1) Considered as one stock for management on oresent evidence.

Winter concentrations off US MA/So. Atlant. coast. Sumer GM, 68, Gulf $5 t$. Lawr.)

Max. age $=18-20 \mathrm{yr}$
Max. age $=18-20 \mathrm{yr}$
Max. length $=56 \mathrm{~cm}$
$x=0.104 \quad 6-25+y r$

Econ. Greenland to
tew Jersey (2 species)
30 is range of 5. mentella off US. Both S. rentella and 5 . marinus found further north. yesr class.
Max. age $=>50 y r$
Max. length $=45-50 \mathrm{~cm}$

$2-5+y r$

At this time, 2 principal year classes in fishery: year classes
1973 and 1974.

1978 is largest year class
to enter fishery since 1969.

First spawn 2-3 yr (50\% mature at age 2).

Soawn in NY Bight and G8
Spawn on western GM and CC Bay
in soring and early
summer. Peak may-June.
Stock also spawns in Gulf
5t. Lawr.
Max egg production: age 4

YELDOMAR
From South coast of -atrador to Chesapeake Bay
i) $G M$
2) $G 3$
3) $S N E$
4) $M A$
5) CC

$\begin{aligned} & k .335 \\ & L=50.0 \mathrm{~cm} \end{aligned}$	$2-12+y r$
	in 1977
	ages 2-3 dominated
	catches in \#fshery.
Max. age $=14+$ yrs	Prior to entrance of
Max. length $=55 \mathrm{~cm}$?	foreign fleets in
	latter 1960's ages
	3 \& 4 dominated catch

15ud 11 y 12-25 age range. 1976 introduced ade ${ }^{3} 5$ into fishery from 1071

Since 1963, only 1971 year
class shows aoove-average strength. Other dominant year classes: 1953, 1963. 1971.

Age at ist recruitment $=5$.
Mature at age 3-9
(viviparous).
Spawn on Scotian Snelf
and Central GM
Peak late June to early
July.

SNE offers more favorable
temo. recime.
Mean age 2 yrs imoroving
recruitment in SNE.
Ratio is $1.95-1$ for 68
1963-1975.
Ratio is 11
Ratio is $11.5-1$ for SNE
1963-1975.

First spawn 2-3 yrs.
Spawns March thru
August on Erowns
Bank.
Max egg production: age 7
henter flounder

From Latacor
to Georgia

1) $68-59 \%$
2) SNE-13\%
3) 6M-22\%
4) Local inshore sopulations found
(O's are of total catch.)

$2-12+y r$

Modal distribution

 of catch would most likely be in ist half of this range.2.7 yrs

Survey catches mostly
3 and 4 yr olds
Max. age $=20$ yrs
Max . length $=95 \mathrm{~cm}$

Recruitment begins at age 1 or 2 with full recruitment at age 3 or 4 .

Mean aqe $=3$ yrs
50\% mature at 35 cm .
Soawns on Nantucket Shoals and south Sept-Apr in a north to south progression. Early sept for GM. Max egg production: age 7.

LMERTCAN PCAICE

From Labrador to south of it ofsehere from yew fork	Rather slow growth rate. $\left.\begin{array}{l} = \\ i x= \end{array}\right\}$ not known	1-9 yrs	Not available.	Soams south of Martna's Vineyard March-dune. Peaks Apr-May.
	Max. age $=$ not known Max. length $=33 \mathrm{~cm}$			(cont'd)

Table 3. cont'd

Natural Mortality	Fishing Mortality	Abundance	$45 Y$	3y-catch/ gistribution
Mackerel (cant.)				
$M=0.15-0.3$	$\begin{aligned} & F_{0.1}^{* 0.4} \\ & F_{\max }=1.0-1.6 \\ & \text { Fcurrent }=0.15 \\ & (\text { ages } 4+) \\ & 1962-1978 \text { data } \end{aligned}$	Rank 2 Increased 30\% beginning 1979 from 1977 low which was 82% below 1959 peak. Increase in near future dependent on 1978 year class.	Newf., SNE, GB, NA = 210,000-230,000 ?	While pelagic, can be caucht with bottom trawis, and at that time will have other groundfish as by-catch, i.e., herring, makes. Generally inshore, then :IE migration in spring for spawning. Tagging shows extensive novement.

REDFISH (cont.)

0×0.1	$\begin{aligned} & F_{0.1}=0.14 \\ & F_{\text {max }}=0.5-1.0 \text { in } \\ & \text { excess } \\ & \text { Fo0.2 average al1 } \\ & \text { year classes, } 1933- \\ & 1963 . \\ & \text { Fw0.4 for more recent } \\ & \text { year classes, } 1955-196 \\ & F_{\text {current }}=0.5,1976-197 \end{aligned}$	Rank 2 fncreasingly dependent on 1911 year class. 1978 survey index 22% iess than 1963-1978 average. Pooulation much lower than during peak catches in 1940's. 63. 77.

$G M, G B=14,020 T$
At current abundance, fishing at MSY effort would yield $5,200 \stackrel{y}{?}$

SNE-MA $=23,000 \mathrm{~T}$

Relatively pure fishery; 35 oure between 1968 and 1978. However redfish are taken in mixed aroundf. fisheries and GM shrimp fishery

Demersal
Nonmigratory

Cod, hadack, other groundf and lounders.
Bemersal
Annual migration to SNE-Hantucket
Shoals zrea moves west in winter and east in sumer.

Csd, haddock, zna otmer ersunc
Demersal
Winter spawning migrations into bays and estuaries - not extensive.

Rank 3

Abundance levels appear to be iow relative to recent years
681978 survey index is $13 *$ greater than 1973-1978 average; SNE 1978 index is a* less than $1963-1978$ average; 191973 index is 95% less than 1957-1978 average.

$$
\begin{aligned}
& \text { Pank } \\
& \text { GM indices increasing since } 1973 \text { and } \\
& \text { greater in i977 than any yedr since } 1960 \text {. }
\end{aligned}
$$

$20,000-22,000 \cdots$

Hixed groundf. wintar lounder. loligo. scup, etc.

Demersa!
Autumn migrations to offsnore wintering grounds where it tixes with loligo.

Jther Flounzers, ang onner groundf

Semersal

vo stgnifteant nigrations.
$($ cont d$)$

Table 3. cont'd

Geographical range; stcek structure	Growth	Age range in fished populations	Recruitment

ATEANTIC HERRING

From oolar ice in Green-
land and Labrador to
Cape Hatteras

1) G8
2) Sova Scotia
3) Coastal ME

	Lo	к
68	34.5	0.34
N. Scotia	39.0	0.170
Coastal ME:		
Western	35.1	0.335
Eastern	38.9	3.277
Max. age $=18 \mathrm{yrs}$		
Max. length	43.5	

$1+12 \mathrm{yr}$
The very strong 1970 year
class provided? ?3. of catch from 1973 to 1976.

Age I juventie fishery Age 3 adult fishery
Ratio is $10.6-1$ for
these stocks 1965-77.
Qatio is 131-1 (Atianto Scandtal 1965-77.

nter fishery at aproximately 4 yrs.

Not available

i.9 yr

A. 9 yr
Average age of alewives
nas declined in recent
yrs.

Alewife dominant ages in catch are 4, 586 .

Alewife

Becoming nore denendent
on a single year class recruited at time of ist spawning.

Bluebacks slower and
grow to a smaller
size

Alewife
$x=.634$
Le= 32.5
Max. age $=11$ yrs
Max. length $=33$ m
Bluebacks slower and
grow to amaller
size

From $C \in$ to Cape Canaveral

1) Vorth of Cace Hatteras
2) South of Gape Hatteras

$$
\begin{aligned}
& k=.088 \\
& x_{5}=67{ }_{5}
\end{aligned}
$$

Max. age $=20 \mathrm{yrs}$
Max. length $=61 \mathrm{~cm}$

2-12 yr
Only available litera.
ture states that in 1945 oopulations was dominated by age 4-7 fish.

Alewife mature between $3-\overline{3}$ yrs.
Biueback
*'s scawn 3-4 yrs
${ }^{7}$'s scawn 4-5 yrs
*Repeat soawning 4-5 times.
Spawning:
Alewife $=$ spring

Litte Skate sartial	Litte Skates mean age
cecruitment at 2 yr	$3-4 / \mathrm{m}$
Yo availdole fata for gther species	All year soawnings with peak perinds all soecies,
	peaks for Little Skate Yov-jan and dun-iul.
	Drobably about in egg cases jer or most species

EMAES

3-10 cm/yr for ist 3 3rd yr 2-3 cm/yr after age 5		$2+3$ rr
		Catch is dominated by age 1-3 yr fisn.
\#. Skate	L. Skate	
$L n=98.9$	52.7	
Max. age:		
Not known	b yrs	
Max. length:		
10% m	52 cm	

Wature at age 3-4.
Spawns Sep-Nov on GB and
Manticket Shoals - SH GM,
smaller spawning stock
along eastern coast of ME
glueback - late spring

Hermaohroditic
Begirulife as ?.
transforms into or
Mature between 2-3 yrs
Larvae caught lun-Nov

Table 3. cont'd

Natural Fishing		
Mortality Mortality	Abundance	By-cathht 0istribution

AINDOWPANE (cont.)

No estm tot known	Tank 3
imates	Survey indices significantly higner since
avail.	$1972(1963-1971)=3.70$. Since $1972=$
able.	19.92 mean/tow.
Life	
nistory	
would indicate	
$\mathrm{M}=0.2-0.3$	

Mot available
Survey indices significantly higner since
19.92 mean/tow
history
would indicate
$\mathrm{M}=0.2-0.3$

WrCM FLOUNDER ficont.)
No est- Not known.
inates
avall
able.
ifis
nistory
moulc
indicate
m-9.i-0.2

Rank 3
1978 G4 survey index is $9:$ greater than $1963-$
1978 average: 1978 vis survey index is 37%
Tess than 1963-1978 average. Large tuctua
tion is seen during this time series.

Agemertality	$F=1.0$ in 1973
$=a \operatorname{rangel}$	$F=0.55$ in 1974
29.150 .32	An F of 3.6 on
$50.30-0.43$	long-term basis
$3{ }_{3} 0.54-0.82$	will provide 95\%
for averace	of yield per me-
in mature poom	from an " of : f .
ulations $\mathrm{M}=0.2$	$F_{0} 1$ ranges from
Tas been used.	3. 0.3 to 0.33

Rank 2
There was an 87% reduction in stock abundance by weight from 1967 to 1973. After 1974 abundance of CB herring is not clear however catcn leclined in $: 976$ and there was at most no catch in 1977. Entry of 1976 jear class is rapidy increasing abundance.
$2 *=16,000 \%$
SUE, $63, * A=$
120.000 T , Scotian

She $1 f=90,200-$
104,000
Pelagio
Toial Msy prooably less Han sum ${ }^{\text {th }}$ indif duals due to stock inter.. acelons.

Catches in purse-setnes and deiagic trawis are reiatively sura. When caumt in soring in $50 .+2 m$ traw fishery, mixed grouncf atso taken.
"elagle
Distribution affers by size k ace Soawn on G8, Jeffrey's sedge 4 autwn then migrate to vy giont area se Querwinter. Miorate back im saring

BHER HERGING, ALENIFE, QLUEACX HERRNG (CONT.)

$4=1.2$	Ammat mortality	Qank 4
Prior to	between $50 \% 60$ \%	Slueback appear less abunam t than dem
soawning	1965-1969	wife in NY 3ight, Mewife - virgin
Alewtre.	39% in 1975	zish comprise greater oortion of popu-
36. of		lation. Decline in stock abundance
spawning dutis	$F_{0.1}=0.38$	since 1959.1978 survey index is ! 1 loss than 1967-1978 average.

Same as sea narming Jater in soring soawning rums is relat vei; pre.
Delacic
Anacromcus. Soawn on Chesaceake Bay in for on tova scotia in sun. Autum spent on $63-\mathrm{am}^{M}$ arez

BLACK SEA BASS (cont.)
gank 4
Landings have declined steadily since early 1950 's from 20 million 1 bs in
950's to >5 million los in mie-1970's.
t978 survey index is 44 , iess than 1967-1973 17erage

Not avallable
Cemersa
Vorthern 200 ations mizate
seasonally isshore norter in
sorimn offinome south in zutwn

Gemersa
L-: response "o cnaroing matert
sencerature: anc is anc
Bering 3 aín, she: tit
Fesadeare Exy - witur

Table 3. cont'd

Geographical range; stock structure	Growth	Age range in fished oopulations	Recruitment

BUTTEREISH

From Newfound, to FL
! 50. of cape Hatteras
2) \%. of cape watteras

Fastest in : 5 t yr $\&$ de-	1-6 yr
creases in each following	During 1974-1976 age
yr	group - ${ }^{\text {+ }}$ and 1+
$r=.861$	fisn dominated catch.
[x=2 ${ }^{1} \mathrm{~cm}$	
Max age $=6 \mathrm{yr}$	
Max. length $=30 \mathrm{~cm}$	

Max. age $=6 y r$
Max. length $=30$
Max. length $=30 \mathrm{~cm}$

Qecruitment lower than

average; trend of de-
creasing age at recruit. ment since 1970; 1971 yr class was most abundant

Age at entry $=0+$

Mature at age $1+2$
Spawns MA to 5% GB May-Aug.

Peaks in Jul

STMY 00GFTSM

From Labracor to FL
Evidence of movement
across Fundian Channel:
40. -so. nigrations

2ate, $3.2 \mathrm{~cm} / \mathrm{yr}$ $\{=\}$ not available

Max. age $=30,7$
Max. length $=110 \mathrm{~cm}$

No information ava ilable
Range - not known
May sustain moderate
fishing mortality rates
Primarily by-catch

No avaliable data
Mature at age 9+
Young born Mov-Jan
Qvoviviparus
Young born Nov-Jan
2 yr cycle
bong lived
L $=$ \} not avallaole
Max. age $=30 y r$ Max. length $=122 \mathrm{~cm}$
nantucket Snoals
lan
3 B
BM
AHG-2 (GOOSEF.5H)
Frof Grand ganxs of Vew Cound 3 Juf of $5 t$. Lawr, to 81
stock oreakdown not
avallable but areas of conc. are:

OCEAN PGUT
From Labrador so, to
Jeiaware Say
3) 3ay of Fundy
2) Sc so.

VORTHEP: SHRIMP

Slower in northeriy
areas

$$
=\{\text { not avaliable }
$$

Lwa
Max. age $=18$ yr
Max. ienoth $=38 \mathrm{~cm}$
$2-10 \mathrm{yr}$
Dominant ages not avallable

Max. length $=38 \mathrm{~cm}$

No ava lable data

: *e ava liable data

No avallable data
ween 5-9 yr
$d^{\text {th }} \mathrm{s}$ between $2-3$ yr
Spawns Sep-0ct

- iant area from 3arents sea nestward to zaffin 15 and and socto
i) $\mathrm{TM}^{(w e s t e r n)}$

```
4ax. age = 6-7 yr
4ax. length = \% 3m
    icaraoace)
```


Table 3. cont'd

Natural	Fisning Mortality	Abundanca	MSy	By-caten/

scup (cont.)
Current data not available

BUTTESF:SH (cont.)

$M=0.3$	F increased from	Rank 3
	. 21 in 1968 to	Autumn surveys indicate 20° decline from
	. 87 in 1974 and	1967-1974
	had dropped since	Mintmm biomass 1969-1973 $=61.000$:
	then due to the reduction af the	1976 stock size - $32,000 \mathrm{~T}$, iowest observed for 1968 - 1926 period
	foreign fishing	1978 survey index is 15 less than 1967 -
		1978 average but still in 45% range

SPINY DOGFiSt foont.

Low be- dot known
cause dog-
fish have
few natural
enemies anc
abuncance re-
mains high
despite low
reproductive
rate

ANGLER (GOOSEFTSHI. ivont.

To: known vot known

Qank a
Historical fluctuations in gopulations size Dramatic reduction from 1960-1970. Increased landings since 1970 indicates resurgence, however :973 survey index is 36% less than i967-1978 average.

Minimum sustainable yieldestimated at 15.000 T

Qemersal
Exensiwe seasonal miorations from insnore summer grounds to offshore winter arounds

Max. catch at $F_{0.1}$ is
14,500-61,500 T dependinc on age at entry into Fisher.

Loligo offshore: mixed groundf. inshore
Pelagic gemersal
Move ofestore in ase autum and somewtat south insurg migration in $\dot{\operatorname{sipr}}$

SEEAN POUT (cont.)
Not known Not known

Rank :
Jectines in survey abundance of 30° from sNE area 3 33:. S3 from 1963-1974.
However, 1978 index is i 3 g greater then 1967 . 1978 average and andings nave increased since 1975.

Mot avaitatie

都

> Qark 4
> 18,2007 standing crop estimate assed in
> $1968-1974$ data
> 1978 survey index is 31 greater man

1967-1978 3verage

$$
\text { rot } \times \text { ant }
$$

-
range ${ }^{\circ}$ biomass: from $i 50,100-225,000$
, itn $\because 20,000$ Tiyr catch since 197?
l972 survey index snows no sionificant enance from 1967-1978 average

教

pe agicisentwamersi!
Soawn oftshore in winter, desir. southward matation in Oct, metarn norty in la*e soring
Grten cudgt and atscandec in sumer ogttom *ext *isnen"es
smon ancinf.
Terers. 1
onmeryre:or:

$40,000 ?$

```
maras m: es ons mave ausaz decrezse in comercia iy iue.
genersa
io Evisence * sionticant miaration
jeasonal suance in iocal - surtowtian so acour
```


semersa

$$
\begin{aligned}
& \text { foum tr seeger naters gismere }
\end{aligned}
$$

Tabie 3. cont'd

Geographic range; stock structure	Growth	age range in fished populations	Recruitment

8405:5

From MA to FL
Fast growing
Yax. age $=14$ yrs

$$
\text { sax. length }=114 \mathrm{~m}
$$

No availabie data

Mature at age 2.5
Spawns May -Jun

TLEF:S.

From tova Scotia :o
Fiorica
Mainly found at
edge of shelf

Slow growth rate
$\dot{L}=\boldsymbol{T}$ not availabie
Max. $19 \mathrm{ge}=40-50 \mathrm{yrs}$
Max, iength $=125 \mathrm{~mm}$
1-3 yrs
l-3 yr olds were bulk of sampled fish

No available data
6
1
1
1
1

No avallable data

6-13 yrs

Age of $15 t$ maturity between
-

Soam from Mar-Sep

On the average recruit. nent probably occurs at age?
v/A
Primarily orfsnore,
CM. GO, SNE, MA

On overdll basis the
buik of the yields are aken of animals
$2-5$ yrs of age

Spawners die
Iferwards so age at curity is about equa to maximum age of indi

Spawns May-Sep insiore

Same as loiigo

Assumed: spawns Dec-ul in deep water offshore areas.
-

Total EIMFISH and SOUTO

mproved over las yearspore*recruits highest in time series. $5-12 \mathrm{~cm})$

974; probably minimal due to snort time series.

re-recrult
 individud!s
 autumn 1978

Ratio is 17-1 for
1959-1974

Table 3. cont'd

Natural Mortality	Fishing Mortality	Abundance	MSY	$\begin{aligned} & \text { 2y-citch/ } \\ & \text { Distribution } \end{aligned}$
Cotigo (cont.) ${ }^{\text {chen }}$				
hign mortali:y after		Autum surveys from 1967 indicated general increase, but trend nas been downward in 1977-1978.	$\begin{aligned} & \text { SNE, } 68, M A= \\ & 44,600 T \end{aligned}$	Intensive by-catch both offshore and inshore mixtures. Butterfish is the major by-catch.
spawning.		Minimum biomass range: $\quad 14,000-52,050 \%$ Population sige range: $1,100-4,8001$ milion individuals (lowest since 1971).		Basically pelagic, out "requents near-botton waters
				Migrate inshore each saring to seawn and offshore in winter

11.5x (cont.)
M=1.56 Not known
Heavy
post
spawing
mortaity
after 1
ye of age.

Rank 3
Survey indices were well below 10 yr average
in al but SNE area - increased in 1975 :0
976 ievel ${ }^{2}$ hign abundance by rumber, nowevery wtitow was 39° less than in 1976 indicatang smaller individuals (second hignest since 1968)

39,000 T

$M=0.2 \quad$	Current ievels
of catch are at	
	about Msy Ievel
	Catches averaged
	$1975-1978$
	88,200

Rank 4

? 978 survey index is is: greater than 1967-1073 average
bereased since the 1960 s stable level in the 1970's

IlEFISH (cont.)

Not	hot avallable
avali-	Fank a
abie	lot avaliabl

avali
abie
rot avaliable

Total FINFSSH and SQulo icont.

$G M, S N E, G B, M A=$ 30,000 :
julf ぶ St. Lawr. ni Grand Sank of lewficundl. = 120,0007

Intensfue by-catch both offshore and inshore. Mixures pf ground soecies taken when fismed near Dot50m.

patagic

Move offsnore in autum thto degener, wamer water

Not significancly fished commer cial!

Pelagic

Gorecations travel northwarj ir
soring and summer, southware in
"al: and winter

MCt avillanle
$000,000 \div(1976)$
$\because /$

